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Quantum systems with discrete symmetries can usually be desymmetrized, but this strategy fails when
considering transport in open systems with a symmetry that maps different openings onto each other. We
investigate the joint probability density of transmission eigenvalues for such systems in random-matrix theory.
In the orthogonal symmetry class we show that the eigenvalue statistics manifests level repulsion only between
every second transmission eigenvalue. This finds its natural statistical interpretation as a staggered superposi-
tion of two eigenvalue sequences. For a large number of channels, the statistics for a system with a lead-
transposing symmetry approaches that of a superposition of two uncorrelated sets of eigenvalues as in systems
with a lead-preserving symmetry �which can be desymmetrized�. These predictions are confirmed by numerical
computations of the transmission-eigenvalue spacing distribution for quantum billiards and for the open kicked
rotator.
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I. INTRODUCTION

Mesoscopic systems exhibit variations in their phase-
coherent electronic transport properties that are conveniently
characterized via statistical approaches. Geometries that clas-
sically give rise to chaotic motion typically display universal
fluctuations which can be captured using ensembles of ran-
dom scattering matrices.1 For normal conductors the univer-
sal properties fall into Dyson’s three universality classes with
symmetry index �=1,2 ,4,2 while additional seven univer-
sality classes can be identified in the presence of supercon-
ducting or chiral particle-hole symmetries.3 A powerful tool
to distinguish these ensembles is the amount of level repul-
sion between the transmission eigenvalues Tn. These eigen-
values determine fundamental transport properties such as
the conductance G or the shot-noise Fano factor F.1,4 In the
Dyson ensembles, the probability density to find two closely
spaced adjacent transmission eigenvalues with small distance
s=Tn+1−Tn is suppressed as P�s��s�.5,6 This introduces a
stiffness in the transmission-eigenvalue sequence which sup-
presses the fluctuations of the conductance and of the Fano
factor when compared to the case of uncorrelated transmis-
sion eigenvalues �the latter being characteristic for classi-
cally integrable systems with a complete set of good quan-
tum numbers�.1,4

From the investigation of closed systems it is well known
that discrete symmetries result in a reduction of level repul-
sion. In such systems, desymmetrization delivers indepen-
dent variants of the system which differ by the boundary
conditions on the symmetry lines �e.g., Dirichlet and Neu-
mann boundary conditions for eigenfunctions of odd and
even parity, respectively�. The statistics of the desymme-
trized versions can depend on the dimensionality of the irre-
ducible representation,7 but still remain within the conven-
tional universality classes. The combined level statistics is
then built by superimposing the independent level sequences
of the desymmetrized variants.5 In open systems, this con-
cept of desymmetrization can be directly applied as long as

the symmetry in question preserves the shape and position of
the leads.8,9

This paper is motivated by the observation that systems
with a lead-transposing symmetry �which maps different
openings onto each other while leaving the dynamics in the
system unchanged� exhibit transport properties that can only
be understood as collective features of the desymmetrized
variants of the system.8,9 An obvious indication of this com-
plication is the fact that the symmetry-reduced variants only
possess a reduced number of leads �we concentrate on sys-
tems with two leads, for which the desymmetrized variants
only possess a single lead�. We demonstrate that such sys-
tems exhibit nevertheless a reduced repulsion of transmission
eigenvalues which is similar to that for systems with a lead-
preserving symmetry. For a large number N of transport
channels, the local statistical fluctuations in the eigenvalue
sequence indeed become indistinguishable for both types of
symmetry. However, for a small number of channels, the
statistics differ from each other, which can be traced back to
the absence or presence of 1 /N corrections in these en-
sembles.

In the specific case of �=1, we derive exact closed ex-
pressions for the joint probability density of transmission
eigenvalues thereby gaining detailed insight into these statis-
tical features. In particular, we find for both the lead-
preserving and the lead-transposing symmetry class that
level repulsion occurs only between every second transmis-
sion eigenvalue. The fluctuations in the transmission-
eigenvalue sequence hence find their most natural statistical
interpretation in a staggered superposition of two indepen-
dent level sequences. In such a superposition, the transmis-
sion eigenvalues alternate between the two sequences when
they are ordered by magnitude.

The exact expressions for the joint probability density
with �=1 are different for the two types of symmetry.
Hence, the details of the transport statistics for a lead-
transposing symmetry deviate from those for a lead-
preserving symmetry. We show that these deviations are
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most significant for a small number of channels, while for a
large number of channels the local eigenvalue statistics do
indeed converge onto each other.

Previous studies of open systems with lead-transposing or
lead-preserving symmetries have derived the distribution of
transmission eigenvalues for one or two open channels and
the one-point density for arbitrary numbers of channels.8–11

For time-reversal symmetric systems with �=1, a key obser-
vation of these works was an enhancement of universal fluc-
tuations for both types of symmetry �when compared to
asymmetric systems�. For systems with a lead-transposing
symmetry it was found that the weak-localization correction
is vanishing, leading to ensemble-averaged expressions for
the conductance and for the shot-noise Fano factor which are
entirely independent of the channel number N.11 The under-
lying staggered level statistics embodied in the joint distri-
bution of transmission eigenvalues provides a unifying ex-
planation for all of these observations. We verify our
predictions by numerical computations for quantum
billiards12,13 and for the open kicked rotator.14–16

This paper is organized as follows: Section II provides
background information on the scattering approach to trans-
port and on standard random-matrix theory. In Sec. III we
revisit the case of systems with a lead-preserving symmetry
and provide the exact reformulation of the eigenvalue statis-
tics in the orthogonal symmetry class ��=1� as a staggered
superposition of two eigenvalue sequences. Section IV con-
cerns systems with a lead-transposing symmetry. In particu-
lar, for �=1 we derive the exact joint probability density of
transmission eigenvalues for arbitrary N, and show that this
again takes the form of a staggered eigenvalue sequence. We
also describe the convergence of the local statistics for both
types of symmetry, which emerges in the limit N→�. Sec-
tion V provides numerical results that illustrate the similari-
ties and differences of the random-matrix ensembles for the
two symmetry classes. This section also contains the com-
parison to specific model systems. Section VI provides a
summary and discussion of our main results.

II. BASIC CONCEPTS

A. Scattering approach to transport

Figure 1 depicts open two-dimensional quantum billiards
representing mesoscopic systems with two attached leads
�L—left and R—right�, each carrying N incoming and N out-
going modes. The systems in Figs. 1�a� and 1�b� are asym-
metric while those in Figs. 1�e� and 1�f� possess a lead-
transposing reflection or inversion symmetry, respectively.
The inversion symmetry in panel �f� survives in the presence
of a finite magnetic field, which however breaks time-
reversal symmetry �an inversion symmetry does not induce a
generalized anti-unitary symmetry, in contrast to reflection
symmetries6�. In the middle panels, Fig. 1�c� shows a system
with a lead-preserving symmetry, and Fig. 1�d� shows a sys-
tem which possesses both a lead-preserving �up-down� and a
lead-transposing �right-left� symmetry.

In order to describe the phase-coherent transport through
these systems for small bias voltage V, one solves the
Schrödinger equation for fixed values of the 2N amplitudes

a= �an
�L� ,an

�R��T in the incoming modes. This results in linear
relations b=Sa for the 2N amplitudes b= �bn

�L� ,bn
�R��T in the

outgoing modes, which delivers a 2N�2N-dimensional scat-
tering matrix of the form

S = �r t�

t r�
� . �1�

Here r ,r� , t , t� are N�N-dimensional matrices describing re-
flection at each lead and transmission from one lead to the
other, respectively.

The scattering matrix is unitary, and its structure is further
constrained by symmetries of the system. The three main
universality classes arise for systems with time-reversal and
spin-rotation symmetry �orthogonal symmetry class with S
=ST, symmetry index �=1�, systems without time-reversal
symmetry �unitary symmetry class with no constraints on S,
�=2�, and systems with time-reversal but broken spin-
rotation symmetry �symplectic symmetry class composed of
self-dual matrices S=SR, �=4�. Spatial symmetries entail ad-
ditional constraints on the scattering matrix, which are de-
tailed in Secs. III and IV.

The transmission eigenvalues Tn are defined as the eigen-
values of the Hermitian matrix tt†. In the case of spin-
independent transport or Kramers degeneracy �the latter oc-
curs for �=4�, the transmission eigenvalues are twofold
degenerate. We then only account for each pair of eigenval-
ues once and introduce a spin-degeneracy factor �=2. When
the twofold degeneracy is lifted then �=1. From here on, N
refers to the number of distinct transmission eigenvalues �ig-
noring accidental degeneracies�. Furthermore we will assume
that the transmission eigenvalues are ordered by magnitude,

� � � � � �

� � � � � �

� � �� � �

	 


FIG. 1. �Color online� Sketches of quantum billiards �a�–�b�
without any spatial symmetry, �c� with a lead-preserving symmetry,
�d� with both a lead-preserving as well as a lead-transposing sym-
metry, �e� with a lead-transposing reflection symmetry, and �f� with
a lead-transposing inversion symmetry. The inversion symmetry in
panel �f� survives in the presence of a finite magnetic field, as is
indicated by a symmetric pair of trajectories.
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T1 � T2 � T3 � . . . � TN, �2�

as this results in a number of technical simplifications. The
conductance quantum is defined as G0=�e2 /h.

With these conventions, the transmission eigenvalues de-
termine fundamental transport properties such as the conduc-
tance via

G = G0�
n=1

N

Tn �3�

and the shot-noise power via

P = 2G0eV�
n=1

N

Tn�1 − Tn� . �4�

Here V is the bias voltage, which is assumed to be small.

B. Dyson’s circular ensembles

Random-matrix theory delivers a statistical description of
transport by drawing the scattering matrices from ensembles
of unitary matrices which obey the constraints of the given
universality class. For the three main universality classes
with �=1, 2, or 4, random-matrix theory is based on Dyson’s
circular ensembles, for which the probability measure is
given by the Haar measure of unitary symmetric, unitary, or
unitary self-dual matrices, respectively. The joint probability
density of transmission eigenvalues then takes the form1

P��Tn	� � 

m�n

�Tm − Tn��

l

Tl
−1+�/2. �5�

The first product in Eq. �5� involves pairs of transmission
eigenvalues and favors sequences in which neighboring
transmission eigenvalues do not approach each other closely.
�As we have ordered the transmission eigenvalues by mag-
nitude, all differences Tm-Tn are positive.� This suppresses
fluctuations in the eigenvalue sequence and ultimately results
in conductance fluctuations on the order of a single conduc-
tance quantum, which for large N approach the asymptotic
value

var G/G0 =
1

8�
. �6�

For large N, the one-point probability density of transmis-
sion eigenvalues approaches

P�T� =
1

	�T�1 − T�
. �7�

The second product in Eq. �5� induces an asymmetry into
this bimodal distribution, which for large N results in the
weak-localization correction

�G
 −
N

2
G0 = G0�1

4
−

1

2�
� �8�

of the ensemble-averaged conductance.
An insightful quantity derived from the joint probability

density P��Tn	� is the distribution P�s� of spacings s=Tn+1

−Tn between neighboring transmission eigenvalues. For un-
correlated eigenvalues with average spacing s̄ one would ex-
pect a Poisson distribution,

P�s� = s̄ −1e−s/s̄, �9�

while for the circular ensembles and N
1, the spacing dis-
tribution can be well approximated by the Wigner
distributions,5,6

P�s� =�
	

2s̄ 2s exp�−
	s2

4s̄ 2� � = 1

32

	2s̄ 3s2 exp�−
4s2

	s̄ 2� � = 2

218

36	3s̄ 5s4 exp�−
64s2

9	s̄ 2� � = 4
� . �10�

Lead-preserving and lead-transposing symmetries entail fur-
ther constraints on the scattering matrix. The consequences
of these constraints for the transmission-eigenvalue statistics
are explored in the remainder of this paper.

III. LEAD-PRESERVING SYMMETRIES

A useful reference point for our subsequent investigation
of systems with a lead-transposing symmetry �in Sec. IV� are
open systems with a lead-preserving symmetry, to which one
can directly apply the standard ideas of desymmetrization.
The goal of the present section is to reformulate the resulting
random-matrix statistics for the case of a lead-preserving
symmetry with �=1 as a staggered level repulsion, as this
will allow us to establish a connection to the case of a lead-
transposing symmetry.

A. Constraints on the scattering matrix

An example of a system with a lead-preserving reflection
symmetry is shown in Fig. 1�c�. Figures 2�a� and 2�b� show
the desymmetrized version of the system, which is halved at
the symmetry line. Dirichlet boundary conditions on the line
of symmetry select scattering wave functions with an odd

� � � � � �

� � � � � � � � � 	 � 
 � � 
 


� � �

� � �

� 


� 


� � � � � � � � �

� � � 
 � � � � � �

� � � 
 � 
 � � �

� � � � 
 � � �

FIG. 2. �Color online� �a�–�b� Desymmetrization of the quantum
billiard with a lead-preserving reflection symmetry, shown in Fig.
1�c�. �c� Sketch of the individual transmission-eigenvalue sequences
of fixed parity. �d� Reorganization as a staggered level sequence,
where transmission eigenvalues alternate after ordering by
magnitude.
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parity, while Neumann boundary conditions yield even par-
ity. Consequently, the transmission matrix t assumes a block
structure where each block corresponds to a given parity. As
dictated by the one-dimensional transverse-mode quantiza-
tion in the leads, the block of even parity has dimension
N1���N+1� /2�, while the block of odd parity has dimension
N2��N /2� �here �·� denotes the integer part of a number�.
Hence, both blocks have either the same size �when N=N1
+N2 is even�, or the block with even parity is by one larger
than the block with odd parity �when N is odd�.

The total transmission-eigenvalue sequence is therefore
obtained from a superposition of two sequences of size N1
and N2 �for illustration see Fig. 2�c��. In order to fix the way
we address the elements of this superposition, we impose the
ordering of Eq. �2� and denote by P the set of all strictly
increasing sequences of indices In� �1,2 ,3 , . . . ,N	, where
each sequence is of length N1. Such sequences are of the
form I= �I1 , I2 , . . . , IN1

�, where 1� I1� I2� I3� . . . � IN1
�N.

For each sequence we also define a complementary sequence

Ī= �Ī1 , Ī2 , Ī3 , . . . , ĪN2
�, which consists of the indices 1� Ī1

� Ī2� Ī3� . . . � ĪN2
�N not contained in I. This partition de-

livers two ordered subsequences TIn
and TĪn

.

B. Conventional random-matrix theory

Within random-matrix theory, the joint probability distri-
bution of the total transmission-eigenvalue sequence is the
sum of the corresponding probabilities for each way to dis-
tribute the transmission eigenvalues into two sets containing
N1 and N2 eigenvalues. With each sequence obeying the sta-
tistics of the appropriate Dyson ensemble one finds with Eq.
�5�

P��Tn	� � �
I�P



m�n

�TIm
− TIn

�� 

m�n

�TĪm
− TĪn

�� � 

l=1

N

Tl
−1+�/2.

�11�

For large N, the separation into two effectively indepen-
dent systems with Dirichlet and Neumann boundary condi-
tions naturally results in a doubling of the conductance fluc-
tuations �Eq. �6�� and a doubling of the weak-localization
correction �Eq. �8��. Moreover, level repulsion is only effec-
tive for transmission eigenvalues which are part of the same
sequence. This modifies the spacing probability density,
which can be calculated from the general expression5

P�s� =
d2

ds2

i
�

0

� �
0

�

pi��i

�
s + y + z�dydz �12�

for multiple sequences i, where pi�s� are the spacing prob-
ability densities of each sequence, while

�i

� is the associated
fractional eigenvalue density.

For two sequences following the Wigner distribution �Eq.
�10��, the resulting spacing probability densities are �s̄�1�

P�=1�s� =
e−2x2

2
+

�	

2
xe−x2E�x�, x =

�	s

4
, �13a�

P�=2�s� =
6x2e−2x2

	
+ 2

x − x3

�	
e−x2E�x� +

E2�x�
2

, x =
s

�	
,

�13b�

P�=4�s� =
x

3�	
�6 + 4x2 − 4x4�e−x2E�x� +

E2�x�
2

+
2x2

9	
�9 + 28x2 + 8x4�e−2x2

, x =
4s

3�	
,

�13c�

where E�x�=erfc�x� denotes the complementary error func-
tion.

C. �=1: reformulation as a staggered eigenvalue sequence

In most situations encountered in random-matrix theory,
the combinatorial sum over partitions involved in the super-
position of eigenvalue sequences �as in Eq. �11�� cannot be
performed explicitly. For the specific case �=1, however, the
combinatorial sum over I in Eq. �11� can be carried out �see
below�, which then yields a closed-form expression

P��Tn	� � 

m�n,

both odd

�Tm − Tn� 

m�n,

both even

�Tm − Tn�

l

1
�Tl

.

�14�

�A similar simplification does not present itself in the cases
�=2 and �=4.� This result finds its natural statistical inter-
pretation as a staggered superposition of two sequences,
which is illustrated in Fig. 2�d�. In such a superposition, the
transmission eigenvalues in each sequence are not distin-
guished by the parity of the associated wave function under
the symmetry operation. Instead, the transmission eigenval-
ues are ordered by magnitude �irrespective of parity�, and
one sequence is composed of all odd-indexed transmission
eigenvalues �of which there are N1� while the other sequence
is composed of all even-indexed transmission eigenvalues
�of which there are N2�. Compared to the original superposi-
tion of two independent sequences, this differs by the addi-
tional constraint

TI1
� TĪ1

� TI2
� TĪ2

� TI3
� TĪ3

. . . �15�

�which is satisfied when all the ordered indices In are odd

while the indices Īn are all even�.
In order to demonstrate the equivalence of Eq. �11� �for

�=1� and Eq. �14� we have to show that the level-repulsion
terms are proportional to each other �both expressions share
the same product of one-point weights 
lTl

−1/2, and the pro-
portionality constant is fixed by normalization�. We set out to
work toward this goal by defining a matrix

M = �− v1 v2 − v3 v4 − v5 v6 . . . �− 1�NvN

w1 w2 w3 w4 w5 w6 . . . wN
� ,

�16�

which is composed of column vectors
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vn = �1,Tn,Tn
2, . . . ,Tn

N1−1�T, �17�

wn = �1,Tn,Tn
2, . . . ,Tn

N2−1�T. �18�

The determinant det M can be evaluated in two different
ways. In the first way, we expand it in terms of subdetermi-
nants with N1 vectors vn from the first N1 rows and N2 vec-
tors wm from the remaining rows. In other words, we sum
over all determinants of the form

det�− v1 v2 0 v4 0 0 . . .

0 0 w3 0 w5 w6 . . .
� , �19�

etc., where the indices of the vectors vIn
form an ordered

subsequence I and the indices of the vectors wĪn
are given by

the complementary subsequence Ī. The alternating signs in
front of the vectors vIn

can be pulled out of the determinant
at the cost of an overall factor �−1�I1+I2+. . .+IN1. Next, we use
permutations of neighboring rows to bring all vectors vIn

to
the left �into row n�. This results in an additional sign factor
�−1��I1−1�+�I2−2�+. . .+�IN1

−N1�. The determinant of the resulting
block matrix factorizes. Overall, this expansion yields

det M = �− 1�N1�N1+1�/2

� �
I�P

det�vI1
,vI2

, . . . ,vIN1
�det�wĪ1

,wĪ2
, . . . ,wĪN2

� .

�20�

Each subdeterminant is of the form of a Vandermonde deter-
minant, and therefore

det M = �− 1�N1�N1+1�/2

� �
I�P



m�n

�TIm
− TIn

� 

m�n

�TĪm
− TĪn

� . �21�

Second, the determinant det M can be evaluated by add-
ing in Eq. �16� the first N2 rows to the last N2 rows. This
yields

det M = det�− v1 v2 − v3 v4 − v5 v6 . . .

0 2w2 0 2w4 0 2w6 . . .
� .

�22�

Proceeding again with the evaluation of subdeterminants we
are left with a single choice, namely, to select vectors vn with
odd index and vectors wn with even index. Accounting for all
signs and now also factors of 2, this results in

det M = �− 1�N1�N1+1�/22N2

� det�v1,v3,v5, . . .�det�w2,w4,w6, . . .� . �23�

As this again involves Vandermonde determinants, we find

det M = �− 1�N1�N1+1�/22N2

� 

m�n,

both odd

�Tm − Tn� 

m�n,

both even

�Tm − Tn� . �24�

The two results of Eqs. �21� and �24� deliver the remark-
able identity

�
I�P



m�n

�TIm
− TIn

� 

m�n

�TĪm
− TĪn

�

= 2N2 

m�n,

both odd

�Tm − Tn� 

m�n,

both even

�Tm − Tn� . �25�

An equivalent identity has been derived for superpositions of
energy eigenvalue sequences with a length difference of at
most one which are distributed according to the Gaussian
orthogonal ensemble.17 Relation �25� shows that the level-
repulsion term in Eq. �11� is indeed proportional to the level-
repulsion term in Eq. �14�. As already mentioned, the one-
point product 
lTl

−1/2 in both expressions is identical, and
the proportionality constant is fixed by normalization. It fol-
lows that for �=1, the independent superposition of two
transmission-eigenvalue sequences with N1 and N2 levels
�with N1 and N2 constrained to differ at most by one� is
identical to a staggered superposition of two transmission-
eigenvalue sequences with N1 and N2 levels, which are cor-
related by the ordering requirement �Eq. �15��.

IV. LEAD-TRANSPOSING SYMMETRIES

Systems with a lead-transposing symmetry require a sepa-
rate treatment since the symmetry operation only commutes
with the Hamiltonian, but not with the current operator
�which changes its sign�. In the presence of an applied bias,
the symmetry operation exchanges the electronic source and
drain reservoirs. An obvious symptom of this complication is
the fact that the desymmetrized system only possesses a
single lead �see Fig. 3�. Mathematically, the transmission
matrix does not assume a block structure but remains full.
We will first adapt the concept of desymmetrization to derive
the constraints of the scattering matrix, and then turn to the
joint probability density of the transmission eigenvalues in
random-matrix theory. Just as in Sec. III, we then focus on

�
��
��
�
��
�

	
�

�
�





� � � �

� � � � � �

� � �

� 



 � � � � � � �

� � � � � � � �

� 	 �
��

�

FIG. 3. �Color online� �a�–�b� Desymmetrization of the quantum
billiard with a lead-transposing reflection symmetry, shown in Fig.
1�e�. �c�–�d� Eigenphases 
n of the matrix Q on the unit circle, and
their projection �Eq. �28�� which delivers the transmission
eigenvalues.

STAGGERED REPULSION OF TRANSMISSION… PHYSICAL REVIEW B 78, 075312 �2008�

075312-5



the orthogonal symmetry class ��=1� and derive a closed
expression for the joint probability density, which again as-
sumes the form of a staggered level repulsion.

A. Constraints on the scattering matrix

The presence of a lead-transposing symmetry immedi-
ately results in the constraint r=r�, t= t� �when time-reversal
symmetry is broken by a magnetic field, this can be achieved
by an inversion symmetry but not by a reflection symmetry�.
In order to further exploit the consequences of the symmetry,
let us inspect a time-reversal symmetric system with a reflec-
tion symmetry, as shown in Fig. 1�e�. As shown in Figs. 3�a�
and 3�b�, the desymmetrized versions are cut at the symme-
try line, where they are equipped with Dirichlet or Neumann
boundary conditions for wave functions of odd �−� or even
parity �+�, respectively. Such wave functions are readily con-
structed starting from the original system when one chooses
incoming amplitudes of the form a�R�= �a�L�. The outgoing
amplitudes are then given by b�L�= �r� t�a�L�. Consequently,
the scattering matrices of the desymmetrized systems are
given by

S� = r � t . �26�

The desymmetrized systems only possess a single open-
ing. In order to revert to the scattering matrix of the original
system we invert Eq. �26�. The transport in the original sys-
tem is therefore described by the transmission matrix t
= 1

2 �S+−S−�, which gives

tt† =
1

4
�2 − S+S−

† − S−S+
†� . �27�

The properties of this matrix—and especially, of its eigen-
values Tn—are not separable and depend on the interplay of
both desymmetrized variants.

B. Conventional random-matrix theory

Random-matrix ensembles for systems with lead-
transposing symmetry can be obtained by assuming that the
scattering matrices S+ and S− of the desymmetrized variants
are statistically independent realizations of the appropriate
standard circular ensemble. The resulting ensembles are
identical to those introduced by Baranger and Mello,9 who
based their considerations on a maximal-entropy principle.

Earlier works have addressed isolated aspects of these en-
sembles, but not the complete transmission-eigenvalue statis-
tics. For instance, it has been observed that a lead-
transposing symmetry increases the conductance
fluctuations8,11 but eliminates the weak-localization
correction.11 For large N, the conductance fluctuations
double, just as is the case for lead-preserving symmetries.
We now provide a complete explanation of these observa-
tions on the basis of the joint probability density of the trans-
mission eigenvalues.

The starting point of these considerations is the relation

Tn = sin2�
n/2� =
1

2
�1 − cos 
n� �28�

between the transmission eigenvalues Tn and the eigenphases

n of the unitary matrix Q�S+S−

†, which follows from Eq.
�27�. As illustrated in Figs. 3�c� and 3�d�, the statistics of
transmission eigenvalues is hence directly imposed by the
statistics of the real parts cos 
n of the unimodular eigenval-
ues ei
n of Q.

In random-matrix theory, the eigenphases 
n follow the
statistics of the associated circular ensemble. This is evident
for the unitary ensemble ��=2�, which is invariant under the
multiplication of an arbitrary fixed matrix �it hence suffices,
e.g., to assume that S+ is random while S− is fixed, or vice
versa�. In the orthogonal case ��=1�, the unitary transforma-
tion Q�=S−

−1/2QS−
1/2=S−

−1/2S+S−
−1/2 results in a symmetric ma-

trix with identical eigenvalues. Their circular statistics then
follows from the fact that the circular orthogonal ensemble is
invariant under the symmetric involution with any fixed
symmetric matrix �here, S−

−1/2�. The same transformation also
succeeds in the case of self-dual matrices ��=4�.

Because of the uniform distribution of eigenphases in the
circular ensemble,5 the one-point probability density P�Tn� is
given by Eq. �7� for any finite N �i.e., not only in the limit
N→��.11 The joint probability density of the eigenphases 
n
is given by5

P
��
n	� � 

m�n

��m sin

m − 
n

2
��

. �29�

Here we ordered the eigenphases by their moduli,

0 � �
1� � �
2� � �
3� � . . . � �
N� � 	 , �30�

and denoted �n=sgn 
n. Since Eq. �28� does not discrimi-
nate the sign of 
n we proceed to the distribution of the
moduli �n= �
n�,

P����n	� = �
��n	

P
���n�n	� . �31�

With the help of the relations

sin��n/2� = �Tn, cos��n/2� = �1 − Tn, �32�

and also accounting for the Jacobian

d�n

dTn
=

1
�Tn�1 − Tn�

, �33�

this yields the joint probability density11

P��Tn	� � 

l

1
�Tl�1 − Tl�

��
��n	



m�n

��Tn�1 − Tm� − �m�n
�Tm�1 − Tn���.

�34�

This expression is symmetric under the replacement Tn→1
−Tn, which explains the absence of weak-localization correc-
tions to the conductance. Moreover, transmission eigenval-
ues do not repel each other when �n=−�m, i.e., when the

KOPP, SCHOMERUS, AND ROTTER PHYSICAL REVIEW B 78, 075312 �2008�

075312-6



underlying eigenphases 
n lie on the opposite �upper and
lower� arcs of the unit circle �see again Fig. 3�c��. As the sets
of eigenphases on both arcs is only weakly cross-correlated,
this explains the doubling of the conductance fluctuations for
large N.

C. Staggered level repulsion for �=1

While the general conclusions of Sec. IV B can be drawn
for any �, it should be noted that Eq. �34� still involves a
combinatorial sum, and hence is similar in status as expres-
sion �11� for systems with a lead-preserving symmetry. We
now show that a much more detailed insight is possible for
the orthogonal symmetry class ��=1�, where the combinato-
rial sum in Eq. �34� can be carried out explicitly �see below�.
The resulting statistics again assume the form of a staggered
level repulsion, but are not identical to Eq. �14� �which was
derived from the superposition of two independent level se-
quences�: For N an odd integer, we find

P��Tn	� � 

m�n,both odd

�Tm − Tn� 

l odd

1
�Tl�1 − Tl�

� 

m�n,both even

�Tm − Tn� , �35a�

while for even N

P��Tn	� � 

m�n,both odd

�Tm − Tn� 

l odd

1
�Tl

� 

m�n,both even

�Tm − Tn� 

l even

1
�1 − Tl

. �35b�

Similar to Eq. �14�, the joint probability density again sepa-
rates into two factors, each involving only every second ei-
genvalue. In particular, neighboring levels are not prohibited
to approach each other closely, and statistical fluctuations of
observables are enhanced, as has been earlier observed for
the conductance and the Fano factor.8–11 The correlation be-
tween the two level sequences is again imposed only indi-
rectly by the requirement that the sequences are staggered.
This ordering requirement is independent of the parity of the
wave function—indeed, in the present case, parity is not well
defined as the transmission eigenvalues arise from the com-
bined properties of S+ and S−.

In order to derive Eqs. �35a� and �35b�, let us first inspect
Eq. �29�. Because of the ordering �Eq. �30��, each factor �m
appears m−1 times, and therefore

P
��
n	� � 

l even

�l 

m�n

sin

m − 
n

2
. �36�

We next pass over to the joint distribution of moduli �Eq.
�31��. In order to evaluate the combinatorial sum over the �n
we express the factor of sine functions in Eq. �36� as a Van-
dermonde determinant,



m�n

sin

m − 
n

2
= �− i�N�N−1�/2det B���n�n	� , �37�

where Bml��
n	�=exp�i
ml�, m=1,2 ,3 , . . . ,N, while the in-
dex l runs in integer steps from −�N−1� /2 to �N−1� /2. The
multilinearity of the determinant then yields

P����n	� � �− i/2�N�N−1�/2det C , �38�

where Cml=2 cos��ml� for odd m and Cml=2i sin��ml� for
even m.

For every l�0 we now add the lth column in C to the
−lth column, which cancels all sine terms in the latter col-
umns. The determinant det C=det D det E then factorizes,
where Dml=cos �ml, m odd, and Eml=sin �ml, m even. If N is
even, the index l is now restricted to l=1 /2,3 /2, . . . , �N
−1� /2. For odd N, this index is restricted to l
=0,1 ,2 , . . . , �N−1� /2 for the matrix D, and to l
=1,2 , . . . , �N−1� /2 for the matrix E.

For odd N we can write Dml as a polynomial of degree l in
cos �m, and Eml as sin �m times a polynomial of degree l−1
in cos �m. We only need to keep the highest monomial, as the
other terms are linear combinations of the rows of lower
index l. This leaves us again with Vandermonde determi-
nants,

det D � 

m�n,both odd

�cos �n − cos �m� , �39�

det E � 

l even

sin �l 

m�n,both even

�cos �n − cos �m� . �40�

For even N, the index l is half-integer, and the elements of
D can now be written as cos��m /2� times a polynomial in
cos��m�, while those of E can be written as sin��m /2� times
such a polynomial. This yields

det D � 

l odd

cos��l/2� 

m�n,both odd

�cos �n − cos �m� ,

�41�

det E � 

l even

sin��l/2� 

m�n,both even

�cos �n − cos �m� .

�42�

The joint probability density �Eqs. �35a� and �35b�� follows
by transforming from �n to Tn, where the Jacobian is given
by Eq. �33�, while the factors in the expressions for D and E
can be rewritten with the help of Eq. �32� and the relation
cos �n−cos �m=2�Tm−Tn�.

D. Large-N asymptotics

It is natural to ask whether the similarity of Eqs. �35a� and
�35b� to Eq. �14� indicates a possible interpretation as a su-
perposition of two independent level sequences �from which
Eq. �14� was derived�. In Eqs. �35a� and �35b�, however, this
interpretation is prevented by the different one-point weight
terms associated with the even- and odd-indexed eigenval-
ues. A symptom of this difference is the fact that Eq. �14�
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implies finite-N weak-localization corrections to the conduc-
tance, while Eqs. �35a� and �35b� deliver the absence of such
corrections, in agreement with the general conclusions in
Sec. IV B. Hence, the statistics of systems with a lead-
transposing and a lead-preserving symmetry �with �=1� only
find a common ground when both are interpreted as a stag-
gered level sequence.

For the case of a lead-preserving symmetry, the frame-
work of superpositions of independent level sequences of
course provides a powerful tool for the derivation of low-
point correlation functions and local statistics �such as the
two-point correlation function, or the level-spacing distribu-
tion �Eqs. �13a�–�13c���. We now argue that in the limit N
→�, this framework can also be adopted for systems with a
lead-transposing symmetry.

In this limit, the transmission eigenvalues form a quasi-
continuum, and the asymptotical statistics follow from the
formal analogy to the statistics of coordinates of a dense set
of parallel line charges in one dimension �the Coulomb gas�,
which exhibit a logarithmic repulsion.1,5 In leading order, the
weight terms enter the analysis of the statistical fluctuations
only via the one-point function P�T�: For fixed index n, the
transmission eigenvalues Tn are confined to a small neigh-

borhood around a nominal equilibrium position T̄n, which is

given by the implicit equation n−1 /2=N�0
T̄nP�T�dT. Subse-

quently, the weight terms can be approximated by a constant

�with all the Tn fixed to T̄n�, while the fluctuations are exclu-
sively governed by the level-repulsion factors of the joint
probability distribution. As the level-repulsion factors are
identical in Eqs. �14�, �35a�, and �35b� one concludes that the
local statistics in both ensembles become indistinguishable in
the limit of N→�.

We therefore obtain the following remarkable result of
purely statistical origin: For a lead-transposing symmetry, as
N is sent to infinity the local statistics �embodied in low-
point correlation functions� converges to that of a superposi-
tion of two independent level sequences. This is the case
even though a classification of transmission eigenvalues by
parity is not possible. In particular, we arrive at the predic-
tion that in this limit, the level-spacing distribution is well
approximated by Eqs. �13a�–�13c�.

V. NUMERICAL INVESTIGATIONS

For the three standard Dyson ensembles of random-matrix
theory, the joint probability density �Eq. �5�� manifests the
celebrated repulsion between neighboring eigenvalues, since
the probability to find two closely spaced adjacent eigenval-
ues is suppressed as �Tn+1−Tn��. In contrast, the joint densi-
ties �Eqs. �14�, �35a�, and �35b�� �both derived for �=1�
describe sequences of reduced stiffness, where only every
second level is subject to mutual level repulsion. As argued
before, as long as N takes on moderate values, the latter joint
densities imply quantitative differences in the transmission-
eigenvalue statistics for lead-preserving and lead-transposing
symmetries, while for large N these statistics should con-
verge onto each other.

In this section we illustrate the differences and similarities
between these scenarios for all three main symmetry classes

��=1,2 ,4� via numerical sampling of the random-matrix en-
sembles, and also compare with realistic model systems. For
convenient characterization of the eigenvalue repulsion we
employ the nearest-neighbor spacing distribution P�s�, as
well as spacing distributions to more distant neighbors. As
we will see, the local statistics of systems with a lead-
transposing symmetry actually show a much weaker N de-
pendence than for systems with a lead-preserving symmetry.
This feature could be anticipated by �but also goes beyond�
the absence of weak-localization corrections in the one-point
function �discussed in Sec. IV B�.

A. Random-matrix theory

We start with the characterization of the level statistics
within the various random-matrix ensembles. Let us first
consider the case of a lead-transposing symmetry with a rela-
tively large number of transport channels, for which we ex-
pect that the local statistics is close to that of a superposition
of two independent level sequences. Starting point of the
numerical computations is Eq. �27�, where the matrix Q
=S+S−

† is drawn from the appropriate Dyson ensemble. In
order to obtain the nearest-neighbor spacing distribution
P�s�, we unfold the eigenvalue sequences to a mean local
spacing s̄�1.5,6 Figure 4 shows the resulting spacing distri-
butions for N=50. For this large number of open channels
we find that the numerical histograms indeed match the pre-
dictions from the superposition of two independent level se-
quences �solid curves; see Eqs. �13a�–�13c��.

For comparison, the inset of Fig. 4 shows the standard
Wigner distributions �Eq. �10��, as well as the Poisson distri-
bution �Eq. �9��. In the Poisson distribution the eigenvalue
spacing density is maximal at s=0; for larger s the probabil-
ity density decreases monotonically. For the Wigner distribu-
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FIG. 4. �Color online� Probability density P�s� of transmission-
eigenvalue spacings for systems with a lead-transposing symmetry,
obtained from 104 random matrices with N=50. Smooth curves:
Spacing probability density �Eqs. �13a�–�13c�� for superpositions of
eigenvalues of two independent sequences from the standard circu-
lar ensembles. The inset shows the Wigner distributions �Eq. �10��
from standard random-matrix theory and the Poisson distribution
�Eq. �9�� for uncorrelated eigenvalues.
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tions the most likely eigenvalue spacing occurs at a finite
value of s; for s→0, the distributions decay algebraically
�s�, while for s→� they decay as a Gaussian. The distribu-
tions in the main panel combine the partial absence of level
repulsion for small s �with P�s=0�=1 /2� with the Gaussian
decay of the Wigner distributions for large s.

For large N, virtually identical results are obtained for the
conventional case of a lead-preserving symmetry. This is
demonstrated in detail in Fig. 5, which also shows the spac-
ing distributions to the second and third-nearest neighbor.
Here, solid curves are for a lead-transposing symmetry and
dashed curves are for a lead-preserving symmetry �corre-
sponding to a superposition of independent level sequences
from the appropriate Dyson ensemble�. For N=100 �right
panels�, dashed and solid curves lie on top of each other and
are practically indistinguishable. This clearly supports the

convergence of the local statistics of both cases for large N.
The left panels in Fig. 5 show the level-spacing distribu-

tions for N=4. In this case, the results for a lead-transposing
symmetry are distinctively different from those for a lead-
preserving symmetry. Interestingly, the nearest-neighbor
spacing distribution for a lead-transposing symmetry is very
similar for small and large N; the distribution for N=4 is
already well approximated by Eq. �13�. In comparison, the
nearest-neighbor spacing distribution for a lead-preserving
symmetry shows a much stronger N-dependence.

B. Comparison to model systems

In order to validate that realistic quantum systems can
indeed be described by random-matrix theory �on which all
previous considerations are based�, we compare our predic-
tions with numerical results for such systems. In particular,
we present results of numerical computations for quantum
billiards, which model a lateral quantum dot, and for the
open kicked rotator, which is based on an efficient quantum
map. We focus on systems in the orthogonal symmetry class
��=1� and contrast systems with a lead-transposing symme-
try to systems without any spatial symmetry.

The quantum billiards are derived from the stadium ge-
ometry, with leads positioned to either break or conserve the
reflection symmetry about the vertical center line �see Figs.
1�b� and 1�e��. The computations are performed using a
modular recursive Green’s function method,12,13 with ener-
gies that permit 5�N�14 open channels in each of the two
leads. As shown in Fig. 6�a�, the eigenvalue spacing distri-
bution agrees well with the predictions of random-matrix
theory, both in presence and in absence of a lead-transposing
symmetry.

The open quantum kicked rotator14–16 is defined by the
scattering matrix
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FIG. 5. �Color online� Probability densities of spacings sn to the
first, second and third neighboring transmission eigenvalue for the
random-matrix ensembles of systems with a lead-transposing sym-
metry �solid curves� or a lead-preserving symmetry �dashed
curves�. In the left panels the number of transport channels N=4,
while in the right panels N=100. Top panels: orthogonal symmetry
class ��=1�. Middle panels: unitary symmetry class ��=2�. Bottom
panels: symplectic symmetry class ��=4�. For each ensemble, the
results represent a sample of 104 realizations.
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FIG. 6. �Color online� �a� Nearest-neighbor spacing distribution
P�s� for the lead-asymmetric stadium billiard of Fig. 1�b�, averaged
over energies in the range N=5–14, and the lead-transposing sym-
metric stadium billiard of Fig. 1�e�, with N=5,6. �b� The same for
open quantum kicked rotators with N=12. In both panels, the solid
curves show the Wigner distribution �Eq. �10�� with �=1 and the
prediction of random-matrix theory for systems with a lead-
transposing symmetry �which can be safely approximated by Eq.
�13a��.
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S = P�e−i� − F�1 − PTP��−1FPT, �43�

where � is the quasienergy,

Fnm = �iM�−1/2ei	/M�m − n�2−iMK/4	�cos 2	n/M+cos 2	m/M�

�44�

is the M �M-dimensional Floquet operator of the kicked ro-
tator, and P is an 2N�M-dimensional matrix which projects
the internal Hilbert space onto the openings. We assume that
M is even and M 
N. The reflection symmetry of the closed
system is manifested in the symmetry Fnm=FM−n,M−m, and
the lead-transposing symmetry of the open system is present
when in addition Pnm= P2N−n,M−m.

Figure 6�b� shows the spacing distributions obtained for
kicked rotators with symmetrical and asymmetrical lead
placement and N=12. The data represents 6600 realizations
which are generated by varying the quasienergy �� �0,2	�,
the kicking strength K� �10,15�, and the internal dimension
M � �498,502�. Again, we find good agreement with
random-matrix theory, including the reduced eigenvalue re-
pulsion in the lead-symmetric case.

The results in this section reveal clear signatures of stag-
gered level repulsion in realistic systems with a lead-
transposing symmetry �and �=1�. It is worth emphasizing
that the applicability of this statistical concept �embodied in
the random-matrix results Eqs. �35a� and �35b�� does not rely
on any pre- or postprocessing or selection of the transmission
eigenvalues in the model systems �as there is no intrinsic
property of the transmission eigenvalues or their associated
scattering wave functions—such as a parity—that could be
used to divide these eigenvalues into two sets�.

VI. SUMMARY AND CONCLUSIONS

We analyzed the transport in open systems with a lead-
transposing or a lead-preserving symmetry via the complete
joint probability density of transmission eigenvalues, ob-
tained in random-matrix theory. For a lead-preserving sym-
metry, the standard concept of desymmetrization reduces the
problem to the investigation of independent nonsymmetric

variants of the system. For a lead-transposing symmetry,
however, the transport characteristics only arise as a collec-
tive property of the symmetry-reduced variants of the sys-
tem. We still found that both types of symmetry result in a
similar reduction of level repulsion, so that transmission ei-
genvalues can approach each other closely. For a large num-
ber of transport channels N, the local eigenvalue statistics for
both types of symmetry indeed become indistinguishable.

Our main analytical results concern a detailed explanation
of these features for systems which also exhibit time-reversal
and spin-rotation invariance �the orthogonal symmetry class,
with symmetry index �=1�. In this case, the transmission-
eigenvalue statistics of systems with a lead-transposing or
lead-preserving symmetry find a common natural interpreta-
tion as a staggered superposition of two independent level
sequences. In such a superposition the eigenvalues alternate
between the sequences when they are ordered by magnitude.
The joint probability densities for the two types of symmetry
only differ in one-point weight factors. For lead-preserving
symmetries these weight factors incorporate 1 /N corrections
for quantities such as the ensemble-averaged conductance,
while these corrections are absent for a lead-transposing
symmetry. This results in differences of the local eigenvalue
statistics when N is small, but becomes insignificant when N
is large.

While we concentrated on systems with discrete spatial
symmetries, our results can also be applied for discrete sym-
metries of different origin �e.g., arising from internal degrees
of freedom� that yield equivalent constraints on the scatter-
ing matrix.
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